
DOCUMENT RESUME

ED 367 700 TM 021 166

AUTHOR Gratch, Jonathan; And Others
TITLE Rational Learning: Finding A Balance between Utility

and Efficiency.
INSTITUTION Illinois Univ., Urbana. Dept. of Computer Science.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO UILU-ENG-92-1736; UIUCDCS-R-92-1756
PUB DATE Jun 92
CONTRACT NSF-IRI-87-19766
NOTE 20p.

PUB TYPE Reports Descriptive (141)

EDRS PRICE MFOI/PC01 Plus Postage.
DESCRIPTORS Computer Assisted Instruction; *Computer Uses in

Education; Costs; *Efficiency; Learning Strategies;
Technological Advancement

IDENTIFIERS *COMPOSER System; Machine Learning; *Rational
Learning; Utility Analysis

ABSTRACT
The field of machine learning has developed a wide

array of techniques for improving the effectiveness of performance
elements. Ideally, a learning system would adapt its commitments to
the demands of a particular learning situation, rather than relying
on fixed commitments that impose tradeoffs between the efficiency and
utility of a learning technique. This article presents an extension
of the COMPOSER learning approach that dynamically adjusts its
learning behavior based on the resources available for learning.
COMPOSER is a speed-up learning technique that provides a statistical
approach to the utility problem. The system identifies a sequence of
transformations that, with high probability, increase the Type I
utility of an initial planning system. The approach breaks the task
into a learning phase and a utilization phase. This extension to
COMPOSER adopts a rational policy that dynamically balances the
trade-off between efficiency and utility. Implications for learning
systems are discussed. (Contains 24 references.) (SLD)

Reproductions supplied by EDRS are the bezt that can be made
from the original document.

VA 7

DEPARTMFNT Oi COMPUTER SCIENCE
,

l'NIVFRSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Ver.r.ptr.i4 *5tiFS

1;,4

MITT 14.1

111 71

THE NEW ADDITIO\
U S DEPARTMENT OF EDUCATION

Orfice or Educahonat Reseaoch and Improerneht

EOu c,A TIONAL RESOURCES INFORMATION
CENTER IERICI

, Itus document has Peen reproduced as
rece.ned Dern I he person or Orgen.ial,Or,
er.ginal.ng .1
MInor Changes have been rnabe to rtlprove
reproduct.on duality

,

ROANNEMISKON
ler-

Pcunts of nen or Of,,,ons Staled nsa OCCu
rnenI do not necessaroy represent offic.31
OEM Posdon or POI.CY

REPORT NO. UNCDCS-R-92-1756 UlLU-ENG-92-1736

Rational Learning: Finding a Balance
Between Utility and Efficiency

by

Jonathan Gratch
Gerald DeJong
Youhong Yang

June 1992 BEST COPY AVAILABLE
2

Rational Learning:
Finding a Balance Between Utility. and Efficiency

Jonathan Gratch and Gerald De Jong
Beckman Institute for Advanced Studies,University of Illinois

405 N. Mathews, Urbana, IL 61801
email: gratch.cs.uiuc.edu

Youhong Yang
Department of Statistics, University of Illinois

725 S. Wright, Urbana, IL 61801

1. INTRODUCTION

The field of machine learning has developed a wide way of techniques for improving the effective-
ness of performance elements. Learning techniques are able to take general performance systems
and tailor them to the eccentricities of particular domains. In this fashion, slow general systems can
be automatically adapted into efficient problem solvers for particular domains. Unfortunately, the
task of learning is difficult. Learning systems must operate under limited resources and must make
many compromises in the interest of learning efficiency. These compromises appear in the form of
design commitments implicit in the architecture of learning systems. These ramifications of these
commitments is that they impose tradeoffs between the efficiency and usefulness ofa learning tech-
nique. The fixed nature of these commitments limits the generality of learning techniques. Ideally,
a learning system would adapt its commitments to the demands of a particular learning situation.
In this article we present an extension of the COMPOSER learning approach [Gratch92b] which
dynamically adjusts its learning behavior based on the resources available for learning.

2. UTILITYBASED VIEW OF LEARNING

Viewed abstractly, a leaming system tailors a performance element to be effective in some environ-
ment. We will take the view that a performance element is some procedure which accepts andex-
ecutes a series of tasks. For example the performance element might be a classifier in which case
each input is some feature vector and the output is a classification. Alternatively, the performance
element could be a planner where the input is problem specifications; the output is plans. The envi-
ronment is simply the tasks a performance element faces. Adaptation to this environment must be
judged against some criteria for success. For example, in the case of a classifier, success is typically
judged in terms of classification accuracy. In planning, criteria include accuracy, planning efficien-
cy, and plan quality.

In this paper we will advocate the utilitybased view of learning adopted by several authors
[Doyle90, Gratch92b, Greiner92b, Leckle9l, Subramanian92]. A particular environment can be
characterized by a probability distribution over the set of possible tasks. The user provides a utility
function which specifies his criteria for success on individual tasks. The effectiveness of a perform-
ance element is characterized by its expected utility over the task distribution. This is the sum of
the utility of each task weighted by the probability ofa task's occurrence. For example, in classifica-
tion, the standard utility function assigns one to a correctly classified feature vector, and a zero to

3

an incorrectly classified vector. The expected utility is simply the accuracy of the performance ele-
ment over the distribution.

Learning can be viewed as a transformational process where, through experience with the environ-
ment, some initial performance element, PE0, is transformed into a performance element, PE*, with
higher expected utility [Gratch92b, Greiner92b]. A classifier can be transformed by updating its
representation of the concepts to be classified for instance through specializing or generalizing
transformations. A planner may be transformed by the addition of control knowledge including ma-
cro-operators [Braverman88, Laird86, Markovitch89], control nlles [Etzioni90, Minton88, Mitch-
e1183], and static board evaluation functions [Utgoff91].

The transformations available to a learner define its vocabulary of transformations. These are essen-
tially learning operators and collectively they define a transformation space. For instance, acquiring
a macro-operator can be viewed as transforming the initial system (the original planner) into a new
system (the planner operating with the macro-operator). In [Drummond90], the addition of a reac-
tive rule transforms one subset of the universal plan into another. In [Minton88], a planner's search
control strategy is transformed by the addition or deletion of a control rule. A learning technique
must explore this space for a sequence of transformations which results in a better planner.

3. LEARNING COST

The utility-based view of learning facilitates a close analogy between learning and work in rational
reasoning. In reasoning there is a reasoner which must choose from a set of actions, an action with
high expected utility. In the utility-based view of learning, thew is a learner which must from choose
amongst a set of possibly transformed performance elements, a performance element with high ex-
pected utility. In reasoning, a reasoner which always chooses the action with maximal expected util-
ity is substantively rational [Simon76] (also called Type 1 rationality [Good71]). Similarly, we can
defme a substantively rational learning system as a system which always identifies the transformed
performance element with maximum expected utility.

The substantive rationality is seldom attainable in that it assumes infinite resources. This has led
to a focus on rationality under limited resources. Simon refers to this as procedural rationality (also
called Type 2 rationality [Good71]) because the focus is on identifying efficient procedures for mak-
ing good-enough decisions. A procedurally rational agent relaxes the strict requirements or sub-
stantive rationality in the interest of reasoning efficiency. The analogy between reasoning and learn-
ing applies here as well. It is seldom reasonable to expend the resources necessary for a learning
system to find optimal solutions. Instead we demand that our learning techniques identify good-
enough solutions quickly. Learning techniques embody numerous constraints to achieve tractable
behavior. For example, classification learning techniques embody biases to restrict thespace of po-
tential transformations. Learning to plan techniques also embody numerous constraints (see
[Gratch92a]).

The demands of learning under limited resources can be addressed by two type of deviations from
the substantive ideal. In one approach, the generality of a technique can be restricted to special cases.
A learning technique retains substantive rationality as long as the learning problem falls within the
restricted set of cases. For instance, classification learning techniquescan exactly identify the target
concept with polynomial examples when it is drawn from a restricted class like monomials or k-
DNF [Pitt]. But this guarantee only applies if we know in advance that the target concept is a mem-
ber of one of these restricted classes. If the concept lies outside the class, the techniques can identify
sub-maximal representations of concepts.

2

4

The second deviation is abandon the goal of maximizing expected utility and instead search for satis-
factory, rather than optimal choices. This corresponds to the notion of satisficing search [Simon75].
Thus, a learning system can tradeoff potential gains from learning in the interest of maintaining
efficiency. A strong learning bias can prevent a system from entertaining some of the best trans-
formed performance elements but, hopefully, it can efficiently identify an adecinate performance
element from the reduced set.

The disadvantage of abandoning substantive rationality is that it afforded a definition of desirable
behavior that was independent of the particular procedure which implements the rational behavior.
The set of optimal solutions are uniquely defmed by the set of choices and the utility function. We
lose this uniqueness when we move to procedural rationality. To discuss procedurally rational learn-
ing systems we must discuss particular policies for resolving the tradeoff between utility and learn-
ing cost.

3.1 Fixed Policy

For nontrivial learning problems there is a clear tradeoff between the expected utility of learned
performance elements and the efficiency of learning. The typical approach is to adopt a fixed policy
towards resolving this tradeoff. The learning system implementor conunits to some fixed set ofcon-
straints for his or her learning approach. Frequently these constraints are unarticulated andappear
implicitly through the learning system architecture. For example, SOAR [I nird86] transforms its
planner by acquiring macrooperators or "chunks." A particular domain theory defines the space
of possible chunks, but only a subset of possible chunks are actively considered. These are the
chunks which arise from problem solving irnprsses. Furthermore, once a chunk is learned, it can
never be forgotten. Thus SOAR is employing a restricted irrecoverable search through the sets of
possible chunks. This is clearly more efficient that choosing among all possible sets of chunks, but
it is less clear how this policy impacts the potential utility of the resulting planners.

Fixed policies can be quite effective in restricted situations. Unfortunately, the same policy may not
apply equally well in all circumstances. We may demand different behavior from our learning sys-
tem depending on if we have a little or a lot of resources to commit towards learning. The former
requires a highly restricted learning technique while latter would be better served by a more liberal
policy.

3.2 Parameterized Policy

An alternative to a fixed policy is to allow the user some control over the behavior of the learning
technique. This can be seen as incorporating some degrees offreedom into the learning technique
which must be resolved by the user. An example is the user specified confidence parameter provided
by PAClearning techniques. Higher confidence requires more examples and thus higher learning
cost. The user is free to resolve this tradeoff based on the demands of his or her particular circum-
stances.

Another example, derived by analogy to work in reasoning, is to construct "anytime" learning sys-
tems. Anytime algorithms can be interrupted at any point with a useful result [Dean88]. Further-
more, results become monotonically better over time. An anytime learning algorithm must at all
times maintain a representation of some viable performance element. As learning resources are ex-
pended, the currently represented performance element must monotonically improve in utility. This
allows the user to arbitrarily determine the resources to commit to learning.

Parameterized policies can greatly enhance the flexibility of a learning technique, but they alsoplace
greater demands on the user. Also, it is not sufficient to provide degrees of freedom. Ifa learning

3 5

technique is to be useful, the user must be told how this freedom impacts the tradeoff between utility
and efficiency. Sometimes this information is only available after learning has begun. For example,
given an anytime learning algorithm, the decision of when to terminate might depend on how fast
the current algorithm is improving, or worse, on how fast it will improve if we continue learning.
If this information is not available to the user, the additional flexibility is only a burden. Under these
circumstances, it is reasonable to build into the learning system capabilities to estimate future learn-
ing benefit and provide this information to the user. Thus, adding useful flexibility can gxeatly com-
plicate the task of designing a learning system.

3.3 Rational Policy

Incorporating degrees of freedom to a learning system increases the flexibility of an approach, but
it also hicreases the demands on the user. There may be a quite complex mapping between the goals
of the user and the setting of the various learning parameters. Ideally, the user should be able to artic-
ulate his or her goals and leave it to the learning system to configure the policy to best satisfy the
goals. If the learner can estimate the cost of learning and a expected improvement which results from
it, it can use these quantities to dynamically tailor a policy which is suited to the particular learning
task. We say a learning system incorporates a rational policy if dynamically balances the tradeoff
between learning utility and learning efficiency. A rational learner is a learning system which uses
a rational policy.

A rational policy requires the user to explicitly specify the relationship between utility and learning
cost. Just as the user of a substantively rational learning approach supplies a utility function (hence-
forth called a Type 1 utility function) which indicates his or her goals, the user of a procedurally ratio-
nal learning system must supply a utility function (henceforth called a Type 2 utility function) which
indicates how these goals are discounted by the cost to achieve them.

A Type 2 utility function can be surprisingly straightforward. For example, in speedup learning
the problem is to increase the efficiency of a problem solver. Under realistic situations, there are
limited resources which must be divided between learning and problem solving. The obvious Type
2 utility function is the expected number of problems which can be solved within a given resource
limit. There is some number of problems we can expect to solve with the initial problem solver.
If the benefits of learning greatly outweigh the resource cost, it is worthwhile expending some re-
sources towards learning a better problem solver. By maximizing the Type 2 utility function a ratio-
nal learning system identifies the best tradeoff between learning utility and cost.

4. A SPECIFIC RATIONAL LEARNING TASK

We further explore the issues of rational learning by providing a rational extension of an existing
machine learning technique. For this we choose the COMPOSER system [Gratch92b]. COMPOS-
ER is a speedup learning technique which provides a statistical approach to the utility problem.
The system identifies a sequence of transformations which, with high probability, increase the Type
1 utility of an initial planning system. The approach breaks the task into two phase, a learning phase
and a utilization phase. First there is a learning phase where examples are taken and transformations
adopted. At some point, determined by the user, learning terminates and the user is expected ut uti-
lize the final planner. The learning phase is broken down into a series of stages where after each
stage some transformation is adopted.

COMPOSER implements a fixed policy. The space of transformations is explored by greedy hill
climbing. Each new best guess is the result of applying a single transformation to the last guess.
Which transformation to adopt is determined by drawing example problems from a fixed problem

4

distribution, and measuring the change in Type 1 utility afforded by a set of possible transformations.
The technique chooses the first transformation which reaches statistical significance using a particu-
lar statistical technique. The first transformation to be identified may not be the transformation
which provides the greatest change in Type 1 utility. Thus COMPOSER does not employ sieepest
ascent hillclimbing. On the other hand it requires fewer examples than what would be needed to
identify the steepest ascent. This reflects a particular policy on the tradeoff between utility and
efficiency. COMPOSER stops learning when it exhausts a set of training examples which are pro-
vided by the user.

We have recently developed an extension to COMPOSER which does employ steepest ascent. This
approach takes sufficient examples at each iteration to identify the transformation which generates
a greater increase in Type 1 utility than any other transformation. This can take significantly more
examples, and thus significantly more resources, than the original COMPOSER system. Depending
on the users goals and available resources, this may or may not be an advance. We could provide
a parameter which configures the system to behave somewhere between these two extremes. Unfor-
tunately, the efficiency of the learning system depends on the particular learning task to which it is
applied, and this efficiency is generally unknown before the system begins to learn. Thus the user
may not be able to make an informed decision on how to set the parameter. For this reason we pro-
pose a rational extension of COMPOSER where the degree of freedom is what transformation to
adopt at each step, among a choice of alternatives which, with high probability, improve the perform-
ance of the current planner. This extension will also internalize the decision of when to stop learning.

Rational learning requires a Type 2 utility function. COMPOSER is a speedup learning, technique
which improves the efficiency, but not the accuracy of a planner. We will consider a particular Type
2 function. The learning system should try to maximize the expected number of problems which
can be solved after learning, given a fixed set of resources. We call this Type 2 function ENP for
Expected Number of Problems. One might consider other utility functions, but this one seems rea-
sonable for the class of tasks COMPOSER is intended, and it helps to illustrates several interesting
issues that face a rational learner.

We describe a hillclimbing approach to the problem of maximizing ENP. The learning algorithm
proceeds by a series of stages. In each stage some number of example problems is taken and a deci-
sion is made to terminate the learning process or to adopt a transformation. A transformation is
adopted if two conditions are satisfied:

i) it enhances the effectiveness of the current performance element with high probability. The ac-
ceptable error on the ith stage is specified by 43e1

ii) it produces the greatest expected singlestep increase in the expected number of problems which
can be solved after learning.

The later is the degree of freedom which the learning system can rationally control. The learning
process hillclimbs through a sequence of performance elements, PEo, PE1,, where each step is
expected to be the largest increase in the expected number of problems which can be solved after
learning, but there is no guarantee of global optimality. Befcre each stage the learning system must
decide if it should continue to learn. If so, it must decide which transformation best satisfies the
above criteria. Section 4.3 describes the implementation, but first we must introduce some notation.

1. The constant 0 < Si < 1 is the probability that the heuristic added on the ith step will improve the ith perform-
ance element. This can be set such that the total error across all stages is less than some prespecified constant. See
[Greiner92a] fa one strategy.

5

4.1 Sequential Analysis

The problem of identifying beneficial transformations is treated as a problem of statistical inference.
The learning system entertahis a set of possible transformations. Example problems are drawn ran-
domly according to the fixed problem distribution and statistics are extracted from each example.
Many statistical inference procedures are based on a fixed sample size the number of examples
necessary to make a conclusion is determined in advance of any observations. The heart of our tech-
nique utilizes a sequential statistical procedure [Govindarajulu8l]. Sequential procedures differ
from fixed-sized techniques in that the sample size is a function of the observations. Sequential pro-
cedures provide a test called a stopping ruse which determines when sufficient examples have been
taken. Examples are taken until the stopping rule is satisfied. The number of examples taken when
the stopping rule is satisfied is called the stopping time. An important advantage of sequential proce-
dures is that the average number of examples required to perform inference is typically smaller the
the number required by a fixed-sized technique. This is because a sequential procedure is able to
take advantage of the information in the observations to determine the sample size.

First we review standard statistical notation. Let X be a random variable. An observation ofa ran-
dom variable can yield one of a set of possible numeric outcomes where the likelihood of each out-
come is determined by an associated probability distribution. Xi is the ith observation of X. EX de-
notes the expected value of X, also called the mean, , of the distribution. In is the sample mean

and refers to the average of n observations of X. More precisely 3-4, . 3? is a good estimator
n

for EX.2

A measure of the dispersion or spread of a distribution is called the variance ofa distribution. Vari-
ance, denoted a2, is defmed as the expected squared difference between a single observed outcome
for X and the mean of the distribution. Formally, a2 E[(X /4)2]. The sample variance,

Dx, -Y(02 , is a good estimator for the variance of a distribution.
fat

The function (13(x) (1/ 5.--a)exp{-0.5y1dy is the cumulative distribution function of the standard nor-

mal (also called standard gaussian) distribution. 0(x) is the probability that a point drawn randomly
from a standard normal distribution will be less than or equal tox. This function plays a important
role in statistical estimation and inference. The Central Limit Theorem shows that, whatever the
distribution of X, the function ./71 ar- 4/o 3, approximates the distribution of the standard normal
variable (see [Hogg78 pp. 192-195] This approximation is quite good in practice, even with small
n. Thus, even when the distribution of X is unknown, in practice we can perform accurate statistical
inference using a "normal approximation."

One of the requirements in our problem specification is that each transformation improve, with high
probability, the expected utility of the performance element. To satisfy this requirement we rely on
a sequential stopping rule. This rule, introduced by Náda s [Naclas69], determines if the mean of a
2. Tx; is unbiased meaning the expected value of Tr equals the mean of the distribution. Of all other possible
unbiased estimatas of the mean,X has the least variance.

3. If o2 is unknown, we can use S2 instead. This is better approximated with the t-distribution which converges
to standard normal as n grows.

6

distribution is positive or negative where the error of this inference is at most 8. The rule defines
a stopping time, ST, as:

min(nS2 1)
: s

Nano AT, a-

where a is defined by (Ka) 8/2, and no is some predefmed positive integer. After stopping, the
inference is made that the mean is greater than (less than) zero if the sample mean is greater than
(less than) zero. Thus, the sequential procedure first takes a small fixedsized sample of no examples
(typically 3 or 7), and then continues taking examples until the stopping rule is satisfied.

In our approach we evaluate multiple transformations simultaneously. In particular we Pssign a stop-
ping rule to each of n transformations and let them "race." The winner of the race is tradsformation
with the smallest stopping time. We then base an inference on the results of the winning stopping
rule. If the error for each stopping rule is 8, the error of a nway race is higher. In the worst case
the error is n8.

In our rational extension we must estimate the cost of learning. Given that we are using the liddas
stopping rule, the cost of learning will be a function of the stopping times associated with different
transformations (this will be stated more precisely in Section *X*). Thus, one element of an estimate
for learning cost is an estimate for stopping times. We can develop an estimator for STusing a sample
of m examples where m < STby using 51 and X. as estimators for s;2, and Y. , and solving the inequal-

ity within the stopping rule for n. Thus n n must obey the further constraint that it is an

integer greater than or equal to no So an estimator for ST is:

StTm maxin°' ra2}1

4.2 Implementation Specific Definifions

The algorithm proceeds through a series of stages. Between each stage the algorithm decides if
learning should continue. If the decision is to continue, the algorithm must identify a transformation
which enhances the number of problems which can be solved after it is acquired. We use the index
variable i, i=0,1.... to indicate a specific stage. PE1 denotes the performance element which exists
at the start of the ith stage. The user supplies an initial performance element PE.o.

4.2.1 Transformations

At each stage the learning system has some set of transformations it can potentially apply to the cur-
rent performance element. In the general case, transformations can be added and removed from this
set at any point in the learning process. Let Tu denote the set of transformations available at the

start of the jth problem within stage i, and let f, be a vector which describes how the set of transfor-

mations changes within stage i. Typically, f, depends on the example problems, and thus may not
be knowable until after learning. APPLY is a function which transforms a performance element with
a particular transformation. If a transformation, t, is adopted on the ith stage, the learning system
creates a new performance element by applying the transformation; PE1.,.1 = APPLY(t, PE1).

7

42.2 Resources

Each learning stage consumes resources. Ri denotes the resources remaining at the start of the ith
stage. The user supplies an initial resource limit Ro. After each stage the resources available for
the subsequent stage are reduced by whatever resources were used.

Le: ri(PEI) denote a random variable which corresponds to the resources required to solve the jth
problem using PEi. We use the abbreviation ri where the stage number is unambiguous. rn(PEi) is
the average resource use of PEi over n problems. This is a good estimator for the mean resource use
of PE; (E[r(PE;)]).

Let Arj(tkIP&) denote a random variable which corresponds to the incremental utility of transforma-
tion tk on problem j over PEi. This is the change in resource use that would result on problem j if
tk were applied to PEi. We use the abbreviation Ari(t) where the stage number is unambiguous. See
[Gratch92b] for one description of how to obtain such values. a;(t) is the average change in re-
source use provided by transformation toyer n problems. This is a good estimator for the incremen-
tal utility of the transformation (E[Ar(tkIPE;)]). We can estimate the expected resource use of the
performance element APPLY(t, PE1) by adding the average resource use of PE; and the change in re-
source use of transformation t given PEi. Formally, E[r(APPLY(t, rn(PE;) Arn(t).

4.2.3 Learning Cost

A transformation provides some increment of benefit to the expected utility of a performance ele-
ment. To realize this benefit we must allocate some of the available resources towards learning.
Under our statistical formalization of the problem, learning cost is a function of the number of exam-
ple problems required to learn a transformation, and the cost of provessing each example problem.
The number of examples depends on our criteria for adoption. For the current task, transformations
must improve expected utility with high probability. Using the Nádas stopping rule, the number of
examples required is simply the stopping time associated with the transformation, ST(t).

In the general case, the cost of processing the jth problem depends on several factors. It can depend
on the particulars of the problem. In can also depend on the currently transformed performance ele-
ment, PEi. For example, many learning approaches derive utility statistics by executing (or simulat-
ing the execution) of the performance element on each problem. Finally, as potential transforma-
tions must be reasoned about, learning cost can depend on the current set of transformations, Tu .

Let Xi(T , PE1) denote the learning cost associated with the jth problem under the transformation
se, I and the performance element PE1. The total learning cost associated with a transformation,

t, is the sum of the per problem learning costs over the number of examples needed to apply the trans-

formation. Let X(t, f, PE;) denote the learning cost for transformation t which is defined as
S7TO

A(1, f,, PE1) PEI) where ST(t) is the stopping time associated with transformation t.
i-1

4.2.4 When and What to Learn

Under our formalization, the task of learning is to maximize the expected number of problems (ENP)
which can be solved after learning. Denote this by ENP(R, PE). This number is a function of the
resources which remain after learning and the transformed performance element. Unfortunately we
do not know these parameters until learning is complete. We are adopting a hillclimbing approach
which simplifies the problem somewhat. At the start of each stage, the learning system only has to

8

1 0

decide if there exists a single transformation which improves the ENP. Thus the learning system
must estimate the learning cost and benefit of the transformations available on a given stage.
Let ENP1(t) be the expected number of problems which would result if transformation t was adopted
on stage i. Estimating this value is the key to deciding of learning should be performed and if so,
which transformation should be applied. We now consider how this can be estimated. If we are in
stage i, by defmition, Rif, is the resources available after stage i. PEi+j is the performance element
which results from this stage and the expected resource use of PEi.4.1 is E[r(PEi4.1)]. Recall that this
is the mean resource cost to solve a problem. The expected number of problems which can be solved
with PE1+1 given R3+1 resources is simply the ratio of the available resources and the per problem
resource use:

ENP(1144.1,PE41)"' 41+1

E[r(PEN.1)]

is the result of transforming PE1 with some transformation tt. Similarly ILI is defmed as Ri
minus the the resource cost to learn t*. The transformation t* should be the member of T, which
yields the largest ENP. Let us consider the expected number of problems associated with a particular
transformation.

Let ENPi(t) be the expected number of problems which could be solved if, on stage i, t is adopted
and learning is immediately terminated. If t were adopted, PEi+i APPLY(t, PEi) and the expected
resource use of PE1i.1 is ENAPPLAt, REDA = Er(PEi) + EAr(t). The resources which remain on
stage i+ I are the resources beginning stage i minus the cost to learn t, or 1144.1 114 f,, PEI) . Thus,
ENPi(t) is defied as the ratio of Rif to EXPE14.1)]. oc

f,,PE,)
ENP,(t)

Er(PE,) - Etir(tipEI)

The learning system should pick the transformation which maximizes ENP. Thus, t* is the t E
such that ENP,(e) . max ENP,(t) . Thus, to implement a solution to this rational learning task we mustteT,

oerive an estimator for ENP(t).

4.2.5 Implementation Specc Assumptions

Our rational learning approach to this specific learning problem depends on an ability to estimate
ENPi(t). This in turn requires estimators for severalparameters which depend on the unknown prob-
lem distribution. This includes the resource use of each performance element, EXPE)] , and the
benefit, E[fir(tIPE)), and learning cost,).(t,f, PE) , of each potential transformation. This places cer-
tain demands on what information must be extracted from each example problem. To estimate re-
source use and the benefit for each transformation, we require the learning system to determine the
resource cost for each problem, rj(PE1), and the change in this cost which each transformation could
provide, Arj(tkIPE1). Theexpected resource cost and transformation benefit can be straightforwardly
estimated by the sample mean of each of these observations, r(PE,) and A7,(tiPE1) .

Estimating the learning cost is complicated by the parameter f, which may not be knowable until
after learning is complete. For our first approach to this problem we make a number of simplifying
assumptions. We assume that the learning system is provided with a fixed set of transformations.
Within a stage, transformations can be discarded from this set, but never added. T, indicates the

9

1 1

set which is available at the beginning of each stage. The user or learning system designer supplies
an initial set To . After each stage i where a transformation is adopted, 1.1.1 is set to To minus any
transformations from To which have already been applied (we assume there is no benefit in applying
the same transformation multiple times). This assumption simplifies some of the statistics by ensur-
ing the each transformation has been evaluated over a same sized set of example problems.

We further simplify the problem of estimating learning cost by assuming that the cost to evaluate
a problem is independent of which transformations are being evaluated. Let ,I,(PE,) be the cost of

S7(1)

processing one example problem and gt,PE,)-EAAPE;) be the cost to learn transformation t. This

assumption simplifies the problem of estimating learning cost. Let K(PE,) denote the average learn-

ing cost across n example problems. Then for any transformation t, if ,St(t) is t's stopping time,

:C(P Ei) x si,,(t) is a good estimator for the cost to learn t. Thus, we can use the following estimator

for 611),(t):

EnPl(t).. -17(PE1) X .ST"(t)
ra(PE,)-E(tIPE,)

We will discuss the consequences of relaxing these assumptions in Section 4.4.

43 Implementation

Learning proceeds through a series of stages. Between each stage the system must decide if it is
worthwhile to learn for one more stage. If not, control is transferred to the performance element
which expends the remaining resources on problem solving. If learning is expected to increase the
ENP, the learning system must decide what to learn next. As we will see, these two questions are
related: deciding whether to learn depends on what is learned.

4.3.1 When to Learn

The system should continue learning for another stage if there exists some transformation of the cur-
rent performance element which will improve the ENP. Let Ili and PE1 be the current available re-
sources and performance element (initially these are Ro and PE,o). If learning is terminated at this
decision point, the current performance element, PE;, can solve some expected number of problems

R,with the remaining resources. In particular, we can expect PE; to solve
EWE)] problems. If the

learning system can identify a transformation t E Ti with ENP;(t) greater than this number, learning
should proceed for at least one more stage. We will estimate the answer to this question using a fix-
ed-sized statistical inference procedure. The learning system will process a small number of exam-
ples and then infer if learning is vvorthwhile.

For a given stage i, let PE; randomly select and process no (a predetermined integer) problems. no
should be chosen relatively small. Let the learning cost for those problems be . Let the
resource cost for PE; over the problems be rl, r2, r0 Let Ari((k), Ar2(tk). . , Ar,(4) be the change
in resource use over each problem if the transformation tk is added to PE1, k = 1, 2, ..., ITil.

To determine if learning is worthwhile we will estimate ENP;(t) for each transformation, based on
the no example problems. If we adopt a transformation, it must benefit the performance element with

10

12

probability 1 Si. Our estimator for ENPi(t) requires estimators of four values: the mean learning
cost, the mean problem solving cost, the mean benefit for the transformation, and the stopping time
for the transformation. We base these values on the following statistics, respectively: , , ,

and ST1(t) marino r .52[A.r1)(t)a2
2
1 where a satisfies 4)(a) = . This selection for a is ex-

6,

plained in Section 4.3.2.1. 7

Learning will help if there exists some t E T, which yields an improved ENP. It suffices to consider

the transformation with the maximum EnPr(t). Denote this by EnP, = mh.axm . Recall

that this statistic was developed in Section 4.2.5.

is an estimator for ENP if learning is terminated without adopting a transformation. If this valueT
ao

is larger than EXTP, , learning should be terminated.

Continue learning if: EIVPI Ili- (T1)

If this inequality is true, then terminate the process of learning and commence solving problems with
PEi. Intuitively, this means we stop learning if the ENP without learning is higher than the ENP
afte: learning for one more stage. If the test fails (there is some transformation which yieldsa higher
ENP) we learn for at least one more stage.

4.3.2 What to Learn

If the learning system decides that another stage of learning is sanctioned, the system must choose
some transformation to adopt. The defmition of our learning task imposed two requirements. First,
each applied transformation must, with high probability, improve the expected utility of the per-
formance element. Secondly, it must choose a trarsformation which yields high ENP. We break
the decision of what to learn into two steps. First the algorithm attempts to identify a single transfor-
mation which improves utility with high probability. If none are discovered, learning is terminated.
If such a transformation is discovered, the learning system then decides if it is worthwhile to take
an additional set of examples with which to fmd a transformation with higher ENP1(t). The error

a-for each of these decisions is set at so chat the total error for the stage is at most Si.
2

4.3.2.1 Phase 1

This phase processes problems, searching for transformations which have positive or negative incre-

mental utility to some prespecified error level (). Each time a transformation demonstrates nega-
2

tive incremental utility it is removed from Ti. Problems are solved until Ti is exhausted (whereupon
learning terminates), or until some transformation demonstrates positive incremental utility. We use
the sequential procedure proposed by Nádas [Nadas69].

Take a satisfying (D(a) 6, ,where Si is a predetermined constant 0 < t5 < 1 indicating the accept-
41T,1

able error level for accepting a beneficial transformation in stage i. A particular transformation t

11

13

has demonstrated its incremental utility to the specified confidence when ST(t) examples are taken.
ST(t) is the stopping time for transformation t and it is determhied by the Nkdas stopping rule:

S2 n
SAO= max(n :)

Naro f12 a2

Let the planner randomly select and solve problems until for at least one transformation, this stop-
ping condition is satisfied. If for at least one such transformation t, the average Ar(t) at this point
is positive, set 49 to be the transformation for which the stopping condition is satisfied and for which
Ar(t) is maximum, and proceed to Phase 2. Otherwise, delete all the transformations causing the
stopping (these have Ar(t) < 0). Keeping solving problems until either Phase 2 is reached or all the
transformations in Ti are deleted. The later ends the whole process.

From the results in Nádas' paper, for a fixed transformation t, the decision that claiming EAr(t) >
0 (E6r(t) < 0) if the average when the process stops is positive (negative) has an error probability

(approximately) less than or equal to -4- . By Bonferroni's method, the error probability at the end

of Phase 1 of claiming EAr(t) > 0 while it is negative, or deleting a transformation with positive

EAr(t) is (approximately) less than or equal to

4.3.2.2 Phase 2

Following Phase 1, to is a transformation with positive incremental utility with small error probabili-

ty (A). Other members of Ti might yield a higher ENP but they have yet to demonstrate signifi-
2

cance. The purpose of Phase 2 is to decide between adopting to immediately, or to solve an additional
set of problems which will allow these other potentially better transformations to reach significance.
The test of Dudewicz and Dalal [Dudewicz75] tells us the number of additional problems which
have to be solved to determine iranother transformation has gseater incremental utility to with error

probability 6, This number can be used to determine the ENP for these other transformations. If
2

no other transformation has greater ENP then to we adopt to immediately and proceed to the next
stage. Otherwise we determine some subset of Ti which is worth investigating further.

The Dudewicz and Dalai procedure is designed to choose, from among a population of K random
variables, the random variable with the highest mean. The procedure identifies the correct variable
(the one with the highest mean) with probability p* whenever the difference between the top two
means is greater than or equal to some value E. In the case where the difference is less than E, the
procedure may not select the best mean, but in this case we, with high probability, select a mean
which is "e-close."

The procedure is based on a multi-variate t-distribution. This plays an role analogous to the stan-
dard normal distribution in the Illidas technique. Instead of using the constant a, Dudewicz and

Dalal defme the constant h as h = hm(K, p*) be the unique solution of J EF,,,(x+ h)r-Y,(x)thc = p' where

p is the probability of a correct decision, K is the number of random variables, and F,,,) and fm()

I 2

14

are the cumulative distribution function and density respectively of a student-t random variable with

r[(nt + 1)/21 F (x)- f,(W)dvr , rto = l'Ody..m= ST- 1 degrees of freedom. fm(x)- (.012 m
es 0

In our problem, K = ITil and p
* = I - (-1- where

61
is the acceptable error for this phase. The table of

2

hm(K, p*) is given in Pudewicz75].

In an analogous fashion to the estimate for the stopping time for the Nádas technique, Dudewicz and
Dalal define the number of examples to pick the highest mean with a stopping time. We use t i
to determine the additional number of examples required for each transformation. Call the number

of examples SY,(t) . s7'2(0- max ST +1,{ (In{:Ai
, t to where a is a predetermined num-

ber. This is the number of problems which are required to test if t to has an incremental utility a
greater than to. First we will test if any transformation has higher ENP than to. This is again based
on the statistics for ENP1(t) that we developed in Section NO TAG, but instead of using the expected
stopping time from the Nádas rule, we use the number of examples derived from the Dudewicz and
Dalal test:

thP2 max { SY..,1(6/-57

foto Isr-a,,rso

EATP2 is the maximum estimate of ENP1(t) of transformations other than to.

Adopt to if EXP2 5 (T2)
FST arST00)

In this case the system places to into the strategy set of the planner which finishes this stage. In this
case we do not expect to do better than to.

If there is at least one transformation with sufficiently high EAT, , we want to find some subset of
Ti which is worthwhile evaluating. The Dudewicz and Dalal technique definesa number of example
problems we must take to certify that a transformation has higher incremental utility than to, namely
SY2(t) . If we choose to evaluate some transformation t, we are forced to take at least ST2(t) examples.
If we evaluate a set of transformations then we are forced to take a number of examples equal to the
maximum ST2(t) of that set. Thus, while we may produce a high ENP by evaluating the entirety of
Ti, it may be worthwhile to consider some subset of the available transformations.

Let tf be the transformation with maximum Eitip, (t, - max Ei1P2(0). The transformation tj will pro-

duce the highest expected gain in ENP.

Let ST, maxiST + 1, (S .4 at .1)6)2 11

This is the number of examples required to decide if ti is truly better than to. t1 may not be better
than to and other members of Ti may. Therefore we want to continue evaluating any potentially
beneficial transformations which can demonstrate significant improvement within ST problems.

Let T1 = {t E TI,ST2(1) 5 .37.21 U to (T3)

T1 contains to plus all transformations for which we can determine a significantly higher incremental
utility over to given S7 2 problems. Let ST3 = S7 2 ST. This is the additional number of problems
which must be processed. Let the planner select and process another 5T3 problems. The system then

adopts the transformation from T1 with the largest Sr(t) . Here, iir(t) is a weighted average of the

observations Arj(t), 1 5 j s ST1(t),f E T1. iir(t) is given by

sr2

a,(t)Ar,(t)

the a(t) being subject to the conditions
sr,

1-1

sr, 6.
and Sas(t) z4(,)- (75-

Dudewicz and Dalal suggest the following strategy for setting ai(t):

al(t) . asr3_1 p

4,3 = 1 (n3 1))3

(ST3-1) ± V(ST3 1)2 (.ST3 1)3T3(1 (670/S2sr3(0)
E (ST3 1)ST3

It was proved in Dudewicz, E. J. and Dalal, S. R. (1975) that if the difference between the largest
EAr(t) and the second largest EAr(t) in T1 is bigger than or equal to 8*, assume also that Arj(t) are
all independent, then the probability of selecting the transformation with the largest EAr(t) is no less
than p*. This is a reasonable test even if Ari(t) are not independent. Thus, as to has positive incremen-

tal utility (A-77(t0) > 0) with error probability (approximately) at most and the transformation we

adopt has greater has incremental utility (if different than to) with error probability (approximately)

at most g-- we adopt a transformation with positive incremental utility with error probability (ap-
2

proximately) at most 8i. If the several top means are very close to each other (the difference is less
than 8*), we can not assure that the transformation we choose has higher incremental utility than 16,
but intuitively, the procedure is unlikely to select a transformation with EAr(t) far away from the
best. In this case, we do not lose much even if we do not get the best transformation.

After adopting this transformation, the learning system reinitializes T1.,1 to any nonadopted trans-
formations and decides again if learning should proceed.

In summary, learing proceeds through a series of stages. Within each stage the system must make
two rational decisions. First the system takes a small set of example and decides determine if further
learning would improve Type 2 utility. If so, some number of examples are taken to fmd a transfor-
mation meeting the minimal requirements. Next, the system decides if this transformation should

14

16

be adopted immediately or if an aditional phase of learning is likely to improve Type 2. The stage
terminates after adompting a transformation, or when it is realized that no transformation is likely
to improve Type 2 utility. The learning system iterates through a series of stages until a decision
is made to terminate learning.

4.4 Discussion

This procedure proceeds through one or more stages, producing a performance element modified
with zero or more transformations. This continues until either the system decides it is not worth-
while to learn, or all transformations are discarded in Phase 1. On each stage for which a transforma-
tion is adopted, the new performance element will be more effective with error Si. On average the
new performance element will also produce a larger ENP, but we cannot yet characterize a bound
on this probability. We are investigating numerical simulations of the technique and expect results
to be available soon.

We adopted a number of assumptions in this presentatice. We assumed that the learning cost withing
a stage is independent the number of transformations. This may not be realistic as in speedup learn-
ing systems like COMPOSER where the cost of extracting incremental utility values depends on the
number of transformations. The model can be extended by breaking learning time into two multiple
components time spent solving each training problem, time spent processing each trainhig prob-
lem, and an additional transformation specific cost which is the additional time required to evaluate
each transformation. The transformation specific costs complicates the decision of whether to pro-
ceed learning, for, although a set of transformations might yield a low maximum ENP, some subset
of those transformations would have a lower per problem learning cost, and might yield a high ENP.

The other major assumption was that the set of trasformations does not grow withing a stage. This
also does not realistic as most speedup learning systems consider new transformations throughout
the learning phase. The simplest approach would be to i-Wd an initial phase where transformations
were learned. A difficulty would be in applying rationality to deciding if it were worth learning a
new transformations. This is because we have no information of the expected improvement of a
transformation until we learn it. We could avoid this complication by moving to a Bayesian model.
The learning system would then need to incorporate prior expectations on the benefit of learning a
transformation.

5. CONCLUSION

Learning systems cannot produce maximal increases in performance and be maximally efficient.
Instead it must adopt a policy which balances these two needs. Most learning techniques adopt a
particular policy to this tradeoff. Unfcrtunately, fixed policies limit the generality of learning tech-
niques. In this article we have tentatively explored the issue of rational learning policies and we
described an extension to the COMPOSER system which adopts a rational policy. While this is only
a first attempt at the problem, but it raises a number of interesting issues, and points to possible solu-
tions for many of them. More importantly, it highlights an issue which is not sufficiently discussed
in the learning community the tradeoff between learning efficiency and utility.

Acknowledgements

We are indebted to the help of Yuhong Yang, Bassirou Chitou, Wen Bin Zhang, and John Marden.
This research is supported by the National Science Foundation, grant NSFIRI 87-19766.

References

[Braverman88] M. S. Braverrnan and S. J. Russell, "IMEX: Overcoming intractability in explanation based learn-
ing," Proceedings of the National Conference on Artificial Intelligence, St. Paul, MN, 1988, pp.
575-579.

[Dean88] T. Dean and M. Baddy, "An Analysis of Time-Dependent Planning,"Proceedings ofThe Seventh
National Conference on Artificial Intelligence, Saint Paul, MN, August 1988, pp. 49-54.

[Doyle90] J. Doyle, "Rationality and its Roles in Reasoning (extended version),"Proceedings ofthe Nation-
al Conference on Arnficial Intelligence, Boston, MA, 1990, pp. 1093-1100.

[Drummond90] M. Drummond and J. Bresina, "Anytime Synthetic Projection: Maximizing the Probability of
Goal Satisfaction," Proceedings of the Eighth National Conference on Artificial Intelligence,
Boston, MA, August 1990, pp. 138-144.

[Dudewicz75] E. J. Dudewicz and S. R. Dalal, "Allocation of Observations in Ranking and Selection with Un-
equal Variances,"Sankhya: The IndianJournal of Statistics 37, Series B, Pt. 1 , (1975), pp. 28-78.

[Etzioni90] 0. Etzioni, "Why ProdigyIEBL Wcxks,"Proceedings ofthe National Conference on Artificial In-
telligence, Boston, MA, August 1990, pp. 916-922.

[Good71] I. J. Good, "The Probabilistic Explication of Information, Evidence, Surprise, Causality, Explana-

tion, and Utility,"in Foundations of Statisticallnference, V. P. Godambe, D. A. Sprott (ed.), Hold,
Rienhart and Winston, Toronto, 1971, pp. 108-127.

[Govindarajulu81] Z. Govindarajulu, The Sequennal Statistical Analysis, American Sciences Press, 11IC., Colum-
bus, OH, 1981.

[Gratch92a] J. Gratch and G. DeJong, "A Framework of Simplifications in Learning to Plan," First Interna-
tional Conference on Artificial Intelligence Planning Systems, College Park, MD, 1992.

[Gratch92b] J. Gratch and G. DeJong, "COMPOSER: A Probabilistic Solution to the Utility Problem in
Speed-up Learning,"Proceedings of the National Conference on Artificial Intelligence, San Jose,
CA, July 1992.

[Greiner92a] R. Greiner and W. W. Cohen, "Probabilistic Hill-Climbing," Proceedings of Computational
Learning Theory and 'Natural' Learning Systems, 1992. ((to appear))

[Greiner92b] R. Greiner and I. Jurisica, "A Statistical Approach to Solving the EBL Utility Problem," Proceed-
ings of the National Conference on Artificial Intelligence, San Jose,.CA, July 1992.

[Hogg78] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Macmillan Publishing Co.,
Inc., London, 1978.

[Laird86] J. E. Laird, P. S. Rosenbloom and A. Newell, Universal Subgoaling and Chunking: The Automatic
Generation and Learning of Goal Hierarchies, Kluwer Academic Publishers, Hingham, MA,
1986.

[Leckie91] C. Leckie and I. Zukerman, "Learning Search Control Rules for Planning: An Inductive Ap-
proach," Proceedings of the Eighth International Workshop on Machine Learning, Evanston, IL,
June 1991, pp. 422-426.

[Markovitch89] S. Markovitch and P. D. Scott, "Utilization Filtering: a method for reducing the inherent harmful-
ness of deductively learned knowledge,"Proceedings ofThe Eleventh InternationalJoint Confer-
ence on Artificial Intelligence, Detroit, MI, August 1989, pp. 738-743.

[Minton88] S. N. Minton, "Learning Effective Search Control Knowledge: An Explanation-Based Ap-
proach," Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA, March 1988. (Also appears as CMU-CS-88-133)

[Mitche1183] T. M. Mitchell, P. E. Utgoff and R. Banerji, "Learning by Experimentation: Acquiring and Refin-

ing Problem-solving Heuristics,"in Machine Learning: AnArtificial I ntelligence Approach, R. S.
Michalski, J. G. Carbonell, T. M. Mitchell (ed.), Tioga Publishing Company, Palo Alto, CA, 1983,
pp. 163-190.

[Nadas69] A. Nadas , "An extension of a theorem of Chow and Robbins on sequential confidence intervals fa-
the mean," The Annals of Mathematical Statistics 40, 2 (1969), pp. 667-671.

16

[Pitt] L. Pitt and L. G. Valiant,"Computational Limitations on Learning from Ex amples,"Journai ofthe
Association for Computing Machinery 35,4 pp. 965-984.

[Simon75] H. A. Simon and J. B. Kadane, "Optimal problemsolving search: allornone solutions," Artifi-
cial Intelligence 6, (1975), pp. 235-247.

[Simon76] H. A. Simon,. "From Substantive to Procedural Rational ity,"in Method and Appraisal in Econom-
ics, S. J. Latsis (ed.), Cambridge University Press, 1976, pp. 129-148.

[Subramanian92] D. Subram :titian and S. Hunter, "Measuring Utility and the Design of Provably Good EBL Algo-
rithms," Proceedings of the Ninth International Conference on Machine Learning, Aberdeen,
Scotland, July 1992.

[Utgoff91] P. E. Utgoff and J. A. Clouse, "Two kinds of training information for evaluation function learn-
ing," Proceedings of the National Conference on Artificial Intelligence, Anaheim, CA, July 1991,
pp. 596-600.

17

19

BIBLIOGRAPHIC DATA
SHEET

1. lisp= No.
UIUCDCS R-92 1756

..........
3. Recipient's Accession No.

M sita

Rational Learning: Finding a Balance Between
Utility and Efficiency

Date
June 1992

.

7. Atehor(s)
Jonathan Gratch, Gerald DeJangs Youhong Yang

B. Performing Organization Rept.
No R-92-1756

9. Performing Organization Name and Address
Department of Computer Science
University of Illinois
1304 W. Springfield Avenue
Urbana, IL 61801

10. Project/Task/Work Unit No.

11. Cosusc:/Gratst No.

NSF IRI 87-19766

12. Sponsoring Organization Name sad Address

NSF

13. Type of Report a Period
Covered

Technical
14,

IS. Supplementary Notes

16. Abstracts
The field
ness of performance
and tailor
be automatically
task of learning
d,any compromises
design commitments

of machine learning has developed a wide array of techniques
elements. Learning techniques are able

them to the eccentricities of particular domains. In

for improving the effective-
to take general performance systems .

this fashion, slow general systems can

puticular domains. Unfortunately, the
limited resources and must make

coupromises appear in the form of
systems. These ramifications of these

and usefulness of a learning tech-
of learning techniques. Ideally,

of a particular learning situation.
learning approach (Gratch92b] which

available for learning.

adapted into efficient problem solvers
is difficult. Learning systems must operate

in the interest of learning efficiency.
implicit in the amhitecture of learning

for
under

These

efficiency
the generality

&manes

resources

commitments is that they impose tradeoffs between the
nique. The fixed nature of these commitments limits
a learning system would adapt its commitments to the

I

In this article we present an extension of the COMPOSER
dynamically adjusts its learning behavior based on the

Tf7rZey Words zed Document/ Analysis. 17e. Descriptors

Utility problem
Machine Learning
Statistics
Decision theory

171s. Identifiers/Open-Ended Terms

17e. COSATI Field/Group

11. Availability Statement

unlimited

19..Security Claes (This
Report)

iuitri'LL:4611;9Iiiiiirr-22.14.

21. No. of Pages

Page
UNCLASSIFIED

rice

ROAM NTHIPIIII 110.701

20

WIGWAM-0C 403111119 1

